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Figure 1: Given the assembly structure of the 153-brick LEGO Technic ROLLING CHASSIS (a), our method quantifies the rigidity of
the structure (b1) and finds the worst-case external load configuration (yellow arrows) that maximally deforms it (c). A larger rigidity value
indicates a more rigid assembly and thus greater resistance to external forces. After we strengthen the initial model as per the recommendation
given by our method, the reinforced model (b2) has its rigidity value tripled, and undergoes less deformation than the initial one under the
same loads that twist the model. The physical experiments (c) also show results that align with the analysis of our method.

Abstract
We study structural rigidity for assemblies with mechanical joints. Existing methods identify whether an assembly is structurally
rigid by assuming parts are perfectly rigid. Yet, an assembly identified as rigid may not be that “rigid” in practice, and existing
methods cannot quantify how rigid an assembly is. We address this limitation by developing a new measure, worst-case rigidity,
to quantify the rigidity of an assembly as the largest possible deformation that the assembly undergoes for arbitrary external
loads of fixed magnitude. Computing worst-case rigidity is non-trivial due to non-rigid parts and different joint types. We thus
formulate a new computational approach by encoding parts and their connections into a stiffness matrix, in which parts are
modeled as deformable objects and joints as soft constraints. Based on this, we formulate worst-case rigidity analysis as an
optimization that seeks the worst-case deformation of an assembly for arbitrary external loads, and solve the optimization
problem via an eigenanalysis. Furthermore, we present methods to optimize the geometry and topology of various assemblies to
enhance their rigidity, as guided by our rigidity measure. In the end, we validate our method on a variety of assembly structures
with physical experiments and demonstrate its effectiveness by designing and fabricating several structurally rigid assemblies.

CCS Concepts
• Computing methodologies → Modeling and simulation;

† corresponding author

1. Introduction

Assembly-based objects are ubiquitous. They can be built as dy-
namic mechanisms that transfer motions or as static structures that
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Figure 2: Illustrations of 2D assemblies connected by mechanical
joints, e.g., linkages. The dynamic mechanism in (a) can transfer
motions (blue arrows) between the left and right poles, whereas the
two static structures in (b) and (c) can bear external loads such as
lateral loads (orange arrows), with different degrees of rigidity.

bear loads; see, e.g., the illustrations in Figure 2. As a dynamic
mechanism, the relative movements between parts can transfer the
driving motion from a motor/crank to the end effectors. For an as-
sembly intended to be a static structure, its parts should have mini-
mum movement relative to one another to resist the external forces
and to make the assembly structurally rigid.

In this work, we study the structural rigidity of static assem-
blies with mechanical joints. Such assemblies are commonly seen
in architecture, furniture, or machine frameworks. To evaluate the
rigidity of an assembly, one may employ existing approaches from
rigidity theory [TD02]. The core idea behind these approaches is to
model an assembly as a graph with fixed edge length embedded in
Euclidean space. An assembly is said to be rigid if the only contin-
uous motions of the graph nodes that preserve the edge lengths are
rigid-body motions of the entire assembly; otherwise, the assembly
is said to be flexible.

One limitation of these approaches is that they can only classify
an assembly as rigid or non-rigid since they assume perfectly-rigid
parts and firmly connected joints. However, real materials are rarely
perfectly rigid and joints can be loose, so rigid assemblies identified
by these approaches may not be that “rigid” in reality. For example,
existing approaches would identify both structures in Figure 2(b)
and (c) as rigid, yet fail to distinguish how rigid each structure is.
As a result, we cannot rely on these approaches to guide the assem-
bly design. The rigidity of an assembly is a result of the physical
interaction between all parts and joints, so a small local modifica-
tion on a part or joint could change the overall mechanical property
of the assembly. Hence, analyzing the structural rigidity for assem-
bly is challenging, requiring global considerations over part shapes,
material, arrangements, and their joint connections.

We approach the problem by developing a worst-case rigidity
measure for quantifying the structural rigidity of assemblies, as in-
spired by a similar concept in structural optimization [ZPZ13]. Our
key idea is to estimate the largest possible deformation of the as-
sembly for arbitrary external loads of fixed magnitude, by mod-
eling parts as non-rigid objects and also the effect of joint jitter.
An intuitive way for this task is to enumerate a large number of
possible load configurations, apply forward finite element method
(FEM) simulation to each of them, and then choose the one that
leads to the largest deformation. This naïve approach, however, in-
duces huge computation, with trials and errors.

We formulate a new and unified framework, in which parts are
treated as non-rigid and modeled using finite elements, and joints
are modeled as soft constraints that restrict the movements of the

parts. By this means, we represent each part by a local stiffness ma-
trix and aggregate these matrices with the joints to form a global
stiffness matrix that represents the entire assembly. Furthermore,
we cast the worst-case rigidity problem as an optimization that
seeks the least deformation on the assembly for arbitrary external
loads. We solve the optimization by using eigenanalysis, where the
smallest positive eigenvalue gives the worst-case rigidity measure,
and the associated eigenvector gives the worst-case external load.

Also, the rigidity analysis is differentiable, so we can readily
adopt it to guide an optimization on the geometry and topology
of the assembly to improve its structural rigidity. Therefore, the
only input to our rigidity analysis and optimization is the assembly
itself; unlike existing methods, prescribed loads are not required.

Overall, this work has the following contributions.
• First, we formulate worst-case rigidity analysis for static assem-

blies with mechanical joints and develop a unified and efficient
framework for computing worst-case rigidity and finding the cor-
responding load configuration.

• Second, we develop methods to optimize the geometry and
topology of assemblies to maximize the worst-case rigidity,
while minimizing necessary modifications to the structure.

We validate our approach on a variety of assemblies, includ-
ing bar-and-joint frameworks, 2D mechanisms, spatial linkages, 3D
body-and-joint framework, LEGO Technic assemblies, and several
everyday objects. Also, we conduct physical experiments to verify
our rigidity measure and demonstrate its effectiveness. Lastly, we
employ our method to guide the design of several structurally rigid
assemblies with mechanical joints.

2. Related Work

Assemblies with Mechanical Joints. A mechanical joint such as a
hinge or ball joint connects parts while allowing the parts to exhibit
relative movement. Assemblies with mechanical joints can form
dynamic mechanisms for transferring motions [MYY∗10], e.g., a
linkage-based mechanical toy that converts an input motion from a
crank or motor to generate intriguing motions [CTN∗13,TCG∗14].
Assemblies with mechanical joints can also form objects whose
poses are manually adjustable [KLY∗14, UTZ16, NBA19]. By the
frictional contacts at joints, these articulated models [BBJP12,
CCA∗12] can be stable at desired poses. In contrast, the pose of
robots can be adjusted automatically, e.g., by using motors to con-
trol the joint angles for performing locomotion [MTN∗15].

Also, assemblies with mechanical joints can be employed to
create transformable designs, e.g., foldable assemblies [ZSMS14,
LHAZ15, MEKM17], deployable structures [ZWC∗16, ZSC16],
and reconfigurable assemblies [GJG16,LMaH∗18,YZC18]. Trans-
formable designs focus on functionalities to be delivered by differ-
ent configurations of the assembly, in which the mechanical joints
define the transformations between the configurations. So far, little
attention has been paid to the rigidity of each assembly configura-
tion, which, however, is critical for practical usage. Our work ad-
dresses this limitation by proposing an efficient way to quantify and
evaluate the rigidity of an assembly, and automatically suggesting
how parts can be modified and/or added to an assembly configura-
tion to enhance its rigidity.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



Zhenyuan Liu et al. / Worst-Case Rigidity Analysis and Optimization for Assemblies with Mechanical Joints

Structural Rigidity. Structural rigidity was initially studied by
mathematicians and engineers [TD02]. To analyze the rigidity
properties of a framework, the framework is often first represented
as a graph embedded in Euclidean space. Laman [Lam70] devel-
oped the first complete combinatorial characterization of bar-and-
joint frameworks in 2D, enabling one to test the rigidity of a frame-
work by counting the vertices and edges in a graph and its sub-
graphs. Tay [Tay84] addressed a generalized rigidity problem for
body-and-bar frameworks in arbitrary dimensions, in which the
rigid bodies are linked by bars with ball joints at the ends. Besides
bars, hinges can also be used to connect rigid bodies. Tay [Tay89]
studied the rigidity of body-and-hinge frameworks composed of
rigid bodies articulated by hinges, while Jackson and Jordán [JJ10]
studied the rigidity of body-bar-and-hinge frameworks, in which
the rigid bodies are connected by bars or hinges. Instead of as-
suming rigid bodies connected by bars and/or hinges, Haller et
al. [HLSS∗12] studied a more general body-and-cad framework
composed of rigid bodies three-dimensionally constrained by pair-
wise coincidence, angular and distance constraints.

Following this line of research, this work focuses on studying
the rigidity of assembly structures connected by mechanical joints.
Compared to the state-of-the-art, our work is unique in two aspects.
First, we propose a worst-case rigidity analysis approach that is
able not only to test the rigidity of a given assembly but also to
quantify how rigid the assembly is under unknown external forces.
Second, we take our rigidity analysis to guide the design and opti-
mization of assemblies with several types of mechanical joints.

Structural Stability. A concept closely related to structural rigid-
ity is structural stability. Unlike assemblies with mechanical joints,
structurally stable assemblies often consist of rigid parts con-
nected by integral joints (e.g., mortise and tenon joints) and/or pla-
nar/curved contacts, and are deployed mainly as static structures.

Fundamentally, an assembly is structurally stable, if it is in
static equilibrium under external forces and torques. The equi-
librium method [WOD09, WSP21a] is the current state-of-the-
art for static analysis of 3D assemblies in computer graphics re-
search, and the method has been employed for designing struc-
turally sound masonry [WSW∗12], LEGO sculptures [LYH∗15],
and furniture with decorative joints [YKGA17]. An assembly is
globally interlocking, if it is in equilibrium under arbitrary ex-
ternal forces and torques [WSIP19]. Due to the static-kinematic
duality, global interlocking can be tested efficiently by using a
kinematic method [WSIP19]. Several computational methods have
been developed to construct interlocking assemblies for differ-
ent applications, including puzzles [SFCO12] and 3D printed ob-
jects [YCXW17]. Please refer to a recent survey [WSP21b] for
more details on stability analysis methods.

Structural Analysis. Structural analysis is to determine the effect
of loads on a physical object. When the external loads are known,
finite element method is a widely-used technique in structural anal-
ysis [SB12]. Taking the structural analysis as a foundation, shape
optimization can be further performed to minimize an object’s ma-
terial cost while preserving its structural strength [MHR∗16]. Re-
cently, several computational methods were developed for struc-
tural analysis without prescribed loads, including worst-case struc-
tural analysis [ZPZ13, ZCT16, SZB18], stochastic structural anal-

Figure 3: Common mechanical joints supported by our computa-
tional approach. R-DOF and T -DOF below each joint model de-
note the associated degrees of freedom for joint rotation and trans-
lation, respectively.

ysis [LSD∗16], and critical instant structural analysis under force
location uncertainty [UMK17]. Our approach shares the same spirit
as the methods for worst-case structural analysis, in which the ba-
sic idea is to perform eigenanalysis to identify the weakest areas
and the worst load configuration on an object. Instead of analyzing
a single solid object, our method performs worst-case rigidity for
assemblies, where the biggest challenge is to model the complex
interactions among the parts, which are connected through differ-
ent kinds of mechanical joints. Also, we cannot simply assume the
adjacent parts are fixed relative to one another (like being glued or
welded together as a single solid object), because mechanical joints
allow various kinds of relative movement between adjacent parts.
Therefore, we have to model these properties of parts and joints and
consider them in our worst-case rigidity analysis.

3. Overview

Our goal is to design mechanical assemblies that can stay rigid
at certain configurations, i.e., not easily deform/break, under (un-
known) external forces. Example assemblies that we attempt to
work with include LEGO Technic models (e.g., Figure 1), linkage-
based models (e.g., Figure 4), and reconfigurable assemblies (e.g.,
Figure 14 (a)). In contrast to the existing methods of rigidity anal-
ysis that assume perfectly rigid parts, our approach only requires
nearly rigid parts in the assembly. Also, our approach is able to
model various common mechanical joints in the analysis; see Fig-
ure 3 for a list of the joints and the associated motion constraints.

To enable the design of structurally rigid assemblies, our com-
putational approach should support the following four tasks:
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Figure 4: Overview of our worst-case rigidity analysis approach. From an input assembly (a), our method first computes the stiffness matrix
of each part, as well as each connecting joint (b). Using this representation, worst-case rigidity analysis can be formulated as an optimization
(c) and solved by an eigenanalysis (d). In our framework, the smallest non-zero eigenvalue and the associated eigenvector correspond to the
worst-case rigidity measure and the associated load configuration, respectively (e). Throughout this paper, we use orange arrows (as in (e))
to indicate the worst-case load configuration.

(i) Test the rigidity. Analyze the given assembly and determine
whether it is structurally rigid or flexible.

(ii) Identify potential motions. If the assembly is flexible, find the
movable parts, as well as their infinitesimal motion.

(iii) Estimate the degree of rigidity. Estimate how rigid the given
assembly is, subject to the worst-case load configuration.

(iv) Enhance the rigidity. Automatically modify the geometry of the
existing parts, as well as make suggestions on how to introduce
new part(s), to enhance the rigidity.

While tasks (i) and (ii) can possibly be handled by a combination
of existing methods, e.g., [HLSS∗12, PTV∗17], we aim for a com-
putational approach that addresses all the four tasks with a unified
and efficient computational framework.

Supporting these tasks involves several technical challenges.
First, we do not assume perfectly rigid parts, so we need to con-
sider the influence of the physical material of every individual part
on the rigidity of the whole assembly. Second, we aim to analyze
the rigidity without assuming prescribed external loads, and simply
trying out all possible load configurations is computationally in-
tractable. Lastly, we need to be able to represent and analyze both
the static properties (tasks (i) and (iii)) and dynamics (task (ii)) of
the assemblies in a unified manner.

Overview of our approach. To meet these challenges, we
first formulate an optimization model for analyzing the worst-case
rigidity, in which we represent parts as stiffness matrices and joints
as soft constraints on the constrained motions (Figure 4(b)). Then,
we formulate the optimization to seek the structural deformation
that produces the least elastic potential energy in the assembly
structure (Figure 4(c)). Our optimization model can be solved ef-
ficiently by finding the eigenvectors of a matrix derived from our
parts and joints representations (Figure 4(d&e)). Ignoring the joint
friction, our analysis can also identify movable parts (tasks (i) and
(ii)) in an assembly, which correspond to structural deformations
with zero energy. Thanks to the eigenvalue, our rigidity measure is

differentiable with respect to the geometric parameters of the input
assembly. Hence, to enhance the assembly’s rigidity, we can derive
a gradient-based method to automatically optimize the geometric
parameters of the assembly. Likewise, we can take the analysis re-
sults to guide the modification of the assembly’s topology, e.g., by
adding reinforcement parts; see, e.g., Figure 1(b).

4. Worst-Case Rigidity Analysis

In this section, we first present our formulation of worst-case rigid-
ity analysis as an optimization problem (Section 4.1) and then de-
scribe how to solve the problem to obtain the rigidity measure (Sec-
tion 4.2). For simplicity, our method is illustrated with 2D exam-
ples, and can be naturally extended to 3D.

4.1. Problem Formulation

Given an assembly with n parts and m joints, we denote each part as
Pi, i∈ {1, ...,n} and each joint as Jk, k∈ {1, ...,m}. In this work, we
consider each part as an individual component that builds up the as-
sembly and each joint as a set of soft constraints (not a physical ob-
ject) on relative part movements. If more than two parts joined to-
gether, we define pair-wise constraints among the connecting parts.

Modeling parts. We represent parts using FEM, so each part
Pi is composed of a set of elements and nodes. Elements can be
bars (see Figure 2), 2D triangles (see Figure 8(b)), or 3D tetra-
hedra (see Figure 14), and we create them using existing trian-
gulation and tetrahedralization tools, such as [HZG∗18]. Denoting
xi = {xi,1,xi,2, ...}T as the position of Pi’s nodes, the deformation
of Pi can be captured by ∆xi, a column vector storing the displace-
ments of nodes in Pi. Furthermore, for each part Pi, we compute
stiffness matrix Ki based on the standard FEM theory [SB12]. The
stiffness matrix Ki maps displacements ∆xi to external forces fi ex-
erted on Pi’s nodes, represented as linear equation fi = Ki∆xi. By
concatenating the displacement vector ∆xi of all parts, we can form
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Figure 5: Modeling a 2D hinge joint. We select nearby nodes in
each connecting part (a) to build matrix Aallow

k whose span repre-
sents the feasible movements of the selected nodes allowed by the
joint (b). The null space of Aallow

k , i.e., Ak, represents all nodes
movements that are constrained by the joint (c).

the overall displacement vector ∆x of the entire assembly. Simi-
larly, we aggregate the stiffness matrix Ki of all parts, and arrang-
ing them on the block diagonal, we can build the overall stiffness
matrix K for the entire assembly. By doing so, we can measure the
elastic potential energy induced by part deformation of the whole
assembly using

EP = ∆xT K∆x. (1)

Modeling joints. To model a joint, say joint Jk that connects
parts Pi and Pj , for each part we sample two nodes from the set of
nodes used for computing the FEM stiffness matrix of that part.
More specifically, we choose the two nodes that are the closest
to the contact surface between the two parts. Then, we aggregate
the displacement vectors of the selected nodes in Pi and Pj into
column vectors ∆xselect

i and ∆xselect
j , respectively; see Figure 5(a).

Hence, our goal of modeling joint Jk is to compose matrix Ak based
on Jk’s properties, where the row vectors of Ak span the space of
part movements constrained by Jk. By doing so, we can formulate
∆nk = Ak[(∆xselect

i )T ,(∆xselect
j )T ]T to quantify the nodes displace-

ment that is constrained by Jk, where the dimension of nk is the
DOFs of the constrained motion of Jk.

Directly constructing the matrix elements in Ak is not easy, since
it is not intuitive to locate all possible part movements prohibited
by joint Jk. Hence, we circumvent the problem by first composing
matrix Aallow

k whose row vectors span different feasible ∆xselect
i and

∆xselect
j allowed by Jk. In other words, matrix Aallow

k represents the
space of all feasible nodes movements allowed by joint Jk. Here,
we can obtain Ak by computing a basis of the null space of Aallow

k ;
see Figure 5(b) and (c). Note also that displacement vector ∆x in
our formulation represents infinitesimal movements of nodes in the
given assembly pose, so that we can use linear equations to model
different types of joint and part motions in a unified manner.

In detail, matrix Aallow
k can be composed row-by-row by consid-

ering three types of feasible node displacements (see Figure 6(b)
for a running example on how to compose Aallow

k and use its null
space to find the prohibited movements for a hinge joint):

• Rigid motion. First, the parts can move all together as a single
rigid body. Since rigid bodies have three DOFs in 2D, we cre-

Figure 6: A running example that illustrates how to formulate the
linear equations for a hinge joint (a): for each node, ai and bi, we
concatenate their allowed instantaneous movements into row vec-
tors of Aallow

k (b) and find the basis of the null space spanned by
Aallow

k , denoted by Ak (c). The row vectors of matrix Ak represents
the constrained motions by the joint (d). To represent node transla-
tions is in fact easier, as we can directly use the allowed translation
vector for all related nodes in composing Aallow

k .

ate three rows in Aallow
k , two for translations (2D) and one for

rotation (1D); see the top red area (i) in Figure 6(b).

• Relative part motion allowed by joint. Second, the parts can per-
form relative rigid motions allowed by the joint. For each DOF
allowed by joint Jk, we create one row vector in Aallow

k ; see
Figure 3 for translation and rotation DOFs allowed by differ-
ent joints. To do so, we fix part Pj and translate/rotate nodes in
xselect

i according to the associated DOF allowed by the joint; see
the middle green area (ii) in Figure 6(b).

• Deformation of parts. Third, each part can undergo deformation
without affecting others. Since it is not easy to directly enumer-
ate all possible node displacements associated with part defor-
mations, we again circumvent the problem by using null space.
If the node displacements of a part are not caused by rigid mo-
tion or relative part motions, they must be caused by deforma-
tion. Hence, for each part, we first find a basis of its rigid motion
and relative part motions, and then compute the basis of its null
space as the space of node displacements of its part deformation;
e.g., see area (iii) in Figure 6(b), {−1,1,1,−1} is the null space
of the four-by-four submatrix above it and we pad zeros for the
remaining row elements not related to the part.

Next, by finding the null space of the row vectors of Aallow
k , we

can obtain Ak and establish the following elastic energy term to
quantify the deviation of the nodes isplacement from the allowed
motion of joint Jk:

ek = ∆nT
k Sk∆nk,k ∈ {1...m}.

Here, ek measures the elastic potential energy induced by the con-
strained joint movement, and Sk is a diagonal matrix that mea-
sures the “stiffness” or “jitter” of the joint along different de-
grees of freedom. We determine the value of coefficient param-
eters in Sk by physical experiments, where our method searches
for the paramater value that best matches the physical behavior
of the real joint; see Section 6 for details. Recall that ∆nk =
Ak[(∆xselect

i )T ,(∆xselect
j )T ]T and ek = ∆nT

k Sk∆nk, and by combin-
ing all energy terms {ek}m

k=1 into a single term, we obtain the de-
viation from the allowed movements of all joints in the assembly:

© 2022 The Author(s)
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EJ = ∆xT J∆x, (2)

where J = AT SA represents the stiffness matrix for all joints, A
represents the matrix aggregated from {Ak}m

k=1 for all joints, and
S represents the stiffness coefficients aggregated from {Sk}m

k=1 of
all joints. Note that A ∈ RD×2N and ∆x ∈ R2N for 2D assemblies,
where N is the total number of nodes and D is the total number of
rows of all {Ak}m

k=1.

Our worst-case rigidity model. We model worst-case rigidity
as an optimization problem, for finding node displacements ∆x that
minimizes the elastic potential energy induced by part and joint
deformation (∆x).

min
∆x

E(∆x)
|∆x|2 (3)

with E(∆x) = EP +EJ = ∆xT (K+J)∆x,

where | · | denotes vector norm, EP is the potential energy of part
deformation, and EJ is the potential energy of joint deformation.

The solution space of Eq. (3) contains two kinds of part move-
ments: (i) rigid part movements (if any), which are allowed by the
joints, and (ii) part and joint deformations. First of all, if E(∆x)
is zero for a non-zero ∆x, it means that one or more parts in the
structure are movable at some joints without inducing energy (i.e.,
without deformation of parts and violating joint constraints). On
the other hand, if E(∆x) is non-zero, it means that the structure is
under deformation. By fixing the squared length of displacement
vector |∆x|2, the relationship between E(∆x) and ∆x can reflect the
stiffness of an assembly structure. The stiffer the structure is, the
more energy is required to cause the same amount of deformation,
i.e., |∆x|2. Therefore, we can measure the rigidity of a structure as
the ratio between E(∆x) and |∆x|2; see again Eq. (3). This objec-
tive value is invariant under scaling |∆x|, since E(∆x)

|∆x|2 =
E(c∆x)
|c∆x|2 for

any non-zero constant c. Thus, by solving Eq. (3), we can obtain
the direction of ∆x, which indicates how the nodes move to induce
the largest deformation with least energy on the structure.

Modeling fixed nodes. In case one or more nodes in an assem-
bly are fixed to the ground or fixed to some other structures, we
adopt a common implementation in FEM by simply removing cor-
responding rows and columns in K+J and also the corresponding
dimension in ∆x.

Visualization of our optimization problem. To study the re-
lationship between the optimization problem (Eq. (3)) and worst-
case rigidity, we create two simple structures with only one mov-
able node, as shown in Figure 7. For simplicity, we fix node(s) to
the ground and set the coefficients of joint constraints to very large
values, such that we have ∆x ∈ R2 and can explore how E(∆x)
changes with ∆x. From the optimization landscape, Eq. (3) finds
the direction ∆x that induces the least increase in elastic poten-
tial energy (vertical axis in the plots in Figure 7); It points in the
direction of the smallest second-order derivative of the energy. in
particular, this ∆x is the instantaneous node displacement from the
current configuration of the structure, and the second-order deriva-
tive in this direction indicates the amount of energy introduced by

Figure 7: Visualizing how our formulation works on two simple
2D assemblies (top-left & bottom-left), both with only one movable
node (marked by ∆x); all other nodes near the ground are fixed.
For each assembly, we plot how the elastic potential energy E(∆x)
changes with node displacement ∆x. The plot shows that the opti-
mal solution of Eq. (3) is the direction of the smallest second-order
derivative from the origin (i.e., ∆x∗), marked by the red arrows in
the plots. This direction can be found by computing the eigenvector
associated with the smallest eigenvalue (right). Note also that the
assembly on top is flexible; our method can identify that it is not
rigid (λ1 = 0) and find the movable direction (red arrow).

an infinitesimal ∆x. If the structure is not rigid, we can identify the
movable parts and ∆x indicates the part movement directions.

4.2. Solve for the worst-case rigidity

Based on our formulation, Eq. (3) can be directly converted into a
eigenproblem by the Courant-Fischer theorem [HJ12], where the
optimal value corresponds to the smallest eigenvalue of the matrix
K+J and the optimal solution is the associated eigenvector.

Interpretation of the eigenvalues and eigenvectors. We de-
note the eigenvalues and eigenvectors computed for solving Eq. (3)
by (λ1,u1), (λ2,u2), · · · (λr,ur), where λ1 ≤ λ2 ≤ ·· · ≤ λr and r is
dimension the corresponding matrix. The optimal value of Eq. (3)
is λ1 and the corresponding optimal solution is ∆x∗ = u1. As illus-
trated in Figure 7, the smallest eigenvalue λ1 indicates the smallest
second-order derivative of E over all the directions from the origin,
revealing the amount of potential energy in deforming the assem-
bly under the worst-case external load, and ∆x∗ is the direction
of the smallest second-order derivative. It indicates how the assem-
bly is deformed by the worst-case node displacement. Furthermore,
we compute the worst-case load configuration by f = (K+ J)∆x∗,
where K + J is the stiffness matrix of the assembly and f is the
corresponding external load that causes the node displacements.

If λ1 is zero, the given assembly structure is flexible, not rigid.
In this case, we can locate the movable parts by examining the as-
sociated eigenvector ∆x∗. The underlying rationale is that if the
structure contains movable parts, our method will find a way to
“deform” the whole structure with zero energy. Figure 11 shows
two examples, where ∆x∗ indicates the potential motion of the
movable parts. In the case of flexible structures, our method can
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still estimate the worst-case rigidity of their largest rigid substruc-
tures by taking the smallest positive eigenvalue. Also, if we in-
terpret the eigenvectors as external loads, the loads together will
automatically keep the structure in equi-
librium; see the inset on the right. This
phenomenon occurs only if the assembly
has no fixed points.

5. Optimizing Rigidity of Assemblies

Our worst-case rigidity analysis model can further guide us to mod-
ify a given assembly’s geometry or topology to improve its rigidity.
We present a gradient-based method for optimizing an assembly’s
geometry in Section 5.1 and a heuristic-based method for optimiz-
ing an assembly’s topology in Section 5.2. Similar to Section 4, we
illustrate our methods with 2D examples.

5.1. Continuous Optimization on Assembly Geometry

Given an assembly, we can parameterize and represent its geometry
as vector q. We take a 2D linkage model with vertex set {pi} and
edge set {ei j}, where pi locates at the endpoints of the parts in the
model. Essentially, the geometry can be parameterized by vertex
positions {pi}, which can be aggregated to form q. Note that {pi}
and {xi} are different; {pi} is a high-level geometric representa-
tion of the overall assembly, whereas {xi} is a set of sampled FEM
nodes, which is larger in quantity and harder to optimize.

Our goal is to improve the worst-case rigidity of assemblies with
least modification on the geometry. To this end, we formulate the
geometric optimization as a minimization problem:

E(q) = wrigidErigid(q)+wgeomEgeom(q) , (4)

where Erigid is our worst-case rigidity measure Eq. (5) and Egeom
measures the amount of modification on the assembly’s geometry.
To handle both rigid and flexible assemblies, we choose the worst-
case rigidity measure Erigid as the smallest non-zero eigenvalue, and
model Egeom as the change in the assembly’s total edge length:

Egeom(q) =
[
∑
ei j

|pi−p j|−∑
ei j

|p̄i− p̄ j|
]2
, (5)

where p̄i is the initial position of pi.

Our worst-case rigidity measure Erigid is differentiable with re-
spect to the input assembly’s geometric parameter q. This is be-
cause the computation of eigenvalues and eigenvectors is differen-
tiable with respect to input matrix K+J. On the other hand, Egeom
is also differentiable with respect to q according to Eq. (5). Hence,
our objective function E is differentiable with respect to q.

We compute the gradient of E with respect to q and employ
gradient descent to iteratively update q for minimizing E . In our
implementation, we use the automatic differentiation package in
PyTorch [PGM∗19] for computing the gradients of the eigenval-
ues, which suffices for our use case since our objective for the
gradient-based optimization only depends on the eigenvalues. Note
that automatic differentiation of eigenvalues is numerically sta-
ble [Gil08] and the gradients may also be computed using an ana-
lytical method [vdAMM07]. In our experiment, we empirically set

Figure 8: Our method improves the worst-case rigidity of a rigid
BRIDGE FRAME (a) and a flexible CRAWLER EXCAVATOR (b) by
continuous optimization of their geometry. The orange arrows (left)
indicate the worst-case external load configuration, whereas the
purple arrows (right) indicate the path of vertices during the opti-
mization with our method.

Figure 9: Given an assembly (left), our method can recommend
where to add a new part to reinforce the assembly’s rigidity against
the worst-case load (orange arrows). In detail, we examine each
new part candidate and recommend the one that gives the most
resistence to the worst-case load.

wrigid and wgeom as −1 and 0.002, respectively, such that we can
maximize the rigidity of the assembly while preserving its orig-
inal shape. Figure 8 shows two examples, demonstrating how our
method works. In Figure 8(a), the middle part of BRIDGE is “lifted”
after the optimization to resist the bending force associated with
the worst-case deformation of the initial structure. In Figure 8(b),
the whole assembly of EXCAVATOR is not rigid. Yet, our method
can still optimize its geometry to improve the rigidity of its sub-
structure. After the optimization, the lever arm of the EXCAVATOR

becomes shorter, such that the external torque exerted on the sub-
structure (marked by the red triangle in Figure 8(b)) is reduced.

5.2. Discrete Optimization on Assembly Topology

Besides optimizing the geometry, we can optimize an assembly’s
topology to improve its rigidity, e.g., by introducing new parts. A
naïve way to form a new part is to exhaustively connect different
pairs of nodes in existing assembly parts, estimate the change in
rigidity, and choose the new part(s) that bring the most improve-
ment. Clearly, this approach is not efficient, since it requires run-
ning the worst-case rigidity analysis on every new part candidate.

To allow controllability in the introduction of new parts, we work
around the issue by developing an interactive solution, in which
the user selects a pair of parts in the assembly and the new part
will only be added to connect nodes between the selected parts. In
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Table 1: Statistics of our results. From left to right: name of the assembly model, corresponding figure, number of parts, number of joints,
number of nodes, time to compute K (see Section 4), time to compute eigenvalues and eigenvectors, total computation time, whether the input
assembly is rigid, and worst-case rigidity value (smallest eigenvalue) before and after rigidity optimization. Note that N/A in the last column
indicates that we did not perform optimization on the assembly in the paper.

Name Figure # parts # joints # nodes (N)
Time for computing

K (s)
Time for

eigenanalysis (s)
Total

time (s)
Rigid

or not?
Rigidity value

before opt. (10−7)
Rigidity value

after opt. (10−7)

ROLLING CHASSIS Fig. 1 153 190 4827 5.607 16.526 22.133 Yes 8.656 26.91
BRIDGE FRAME Fig. 8 11 7 88 0.062 0.023 0.085 Yes 63000 113513

CRAWLER EXCAVATOR Fig. 8 6 7 109 0.018 0.023 0.041 No 0 0
- Fig. 9 4 6 210 0.015 0.012 0.027 Yes 16.2 44.3
- Fig. 10 (a) 8 6 96 0.018 0.005 0.023 Yes 1707 N/A
- Fig. 10 (b) 16 18 200 0.032 0.014 0.046 Yes 3.74 N/A
- Fig. 10 (c) 3 4 108 0.012 0.006 0.018 Yes 9.386 N/A
- Fig. 10 (d) 12 6 468 0.591 0.210 0.801 Yes 137 N/A
- Fig. 10 (e) 4 4 108 0.050 0.053 0.103 Yes 3.26 N/A
- Fig. 10 (f) 35 44 956 0.445 0.413 0.858 Yes 7.189 N/A
- Fig. 10 (g) 25 32 422 0.1187 0.3608 0.4795 Yes 2103.14 N/A
- Fig. 11 (top) 6 6 72 0.013 0.004 0.017 No 0 1658
- Fig. 11 (bot) 25 32 502 0.205 0.263 0.468 No 0 3918

BOOMERANG Fig. 14 (a) 3 4 188 0.055 0.008 0.063 Yes 249.62 1097.59
BUNNY Fig. 14 (b) 22 32 215 0.062 0.007 0.069 Yes 80.95 216.31

DRYING RACK Fig. 14 (c) 10 10 638 0.131 0.616 0.747 Yes 5.11 64.6
TECHNIC BIRD Fig. 14 (d) 84 109 1900 1.105 1.809 2.914 Yes 65.31 97.87

RODS BOAT Fig. 14 (e) 88 30 968 2.508 2.235 4.743 No 0 2595

detail, our method first forms a set of new part candidates, each
connecting a unique pair of nodes on the two selected parts. For
each pair of nodes, we compute the difference between the worst-
case node displacement vectors for each node, and project these
vectors onto the line that connects the two nodes. The length of
the projected vector reveals the new part’s ability to resist the de-
formation of the worst-case load, so we recommend the node pair
with the longest projected vectors to the user; see, e.g., Figure 9.
Experimentally, enumerating all node pairs may yield as many as
100 candidates, but it takes less than 0.01s to compute. Interested
readers may further adopt other heuristics for speed-up.

6. Results and Experiments

We implemented our method in Python 3.8 on a computer with a
dual-core 2.5GHz Intel i5-7200U CPU and 8GB RAM. We used
NumPy [HMvdW∗20] and SciPy [VGO∗20] for numerical com-
puting, e.g., computing the null space and eigenvectors. We con-
ducted experiments to evaluate our rigidity analysis and optimiza-
tion in various aspects; see Section 6.1. We showed the usefulness
of our approach by designing and fabricating several structurally
rigid assemblies for use in different applications; see Section 6.2.

Table 1 summarizes the statistics of all results presented in the
paper, in which we report the complexity of each input assembly
(i.e., the number of parts, joints, and nodes), the computing time
(next three columns), whether the input assembly is rigid or not,
and the rigidity value before and after our optimization (last three
columns). From Table 1, we can see that our approach can well
handle assemblies with over 100 parts and nearly 200 mechanical
joints; see also Figure 1. The total run time for most assemblies is
less than one second, making it possible to provide nearly interac-
tive feedback to users. As expected, the run time mainly increases
with the number of nodes, and the computation for eigenvalues and
eigenvectors dominates the overall run time. In practice, if the user

only requires the result for worst-case rigidity (the smallest eigen-
value and eigenvector), we can accelarate the computation by ap-
plying methods tailored to sparse matrix such as [LSY98]. Also, we
only use a laptop computer and do not optimize our computation in
our experiments, e.g., harnessing parallel computation on the GPU
to speed up the matrix construction and eigenanalysis, which will
further accelerate the computation.

Measuring stiffness coefficients for joints. We conduct phys-
ical experiments to measure the stiffness coefficients to form
matrix S (see Section 4.1). We introduce our method of mea-
suring the coefficients of the joint between the LEGO Tech-
nic beam and LEGO Technic pin, as shown in the inset figure.
In this case, relative rotation about the pin
axis is allowed, and five other DOFs are con-
strained, including three for relative translation
that cause shearing of the pin and two for rel-
ative rotation that cause bending of the pin.
Among them, the DOF for translation along the
pin axis is restricted by the blocking of the material of the parts, so
we model it by setting the stiffness coefficients to a very large value
(108 N/m in our experiments). Then, we conduct physical experi-
ments to measure the coefficients of two DOFs for pin shearing and
two DOFs for pin bending. Since both the LEGO Technic beam
and LEGO Technic pin are symmetric about their rotation axis, we
use the same coefficient value for two DOFs of pin bending, and
also the same value for two DOFs of pin shearing. In our experi-
ment, we build a simple assembly composed of two LEGO Technic
beams connected by two pins, and fix one beam, and hang a 200g
standard weight on the other beam. Then, we place the assembly
under different poses, and for each pose, we measure the deviation
of the endpoint of the beam compared to its rest position. After
we collect the data about the weight and the corresponding devi-
ation, we use a simple search procedure to search for the correct
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Figure 10: Our method can successfully identify all the above models as rigid, fully automatically. (a), (b) and (c) are 2D mechanical
assemblies made up of hinges and sliding joints; (d) is a body-and-joint framework; (e) is a spatial linkage model with hinge joints (none
of the rotation axes are parallel); and (f) & (g) are mechanical assemblies (LEGO Technic models) with 32 and 30 joints, respectively. The
orange (or yellow) arrows reveal the worst-case load configurations.

Figure 11: Our method can detect potential (infinitesimal) parts
motions, as demonstrated on the six-bar linkage shown on top and
the LEGO Technic assembly (28 bricks) shown at the bottom. The
green arrows indicate the detected parts’ movement directions.
Based on the motions of the detected parts, users can introduce
additional parts (in yellow) to make the assembly rigid.

coefficients by running a series of forward simulations over a range
of stiffness values and select the one that produces the closest de-
viation effect with the physical experiment. The coefficient values
measured by our method are 65625 N/m for pin shearing and 14992
N/m for pin bending. We use the values for stiffness coefficients of
the joint in experiments shown in Figure 10 (e-g), Figure 11(bot-
tom), ROLLING CHASSIS (Figure 1), BOOMERANG, BUNNY and
TECHNIC BIRD (Figure 14(a-c, e)). For other experiments, we use
10000 N/m as the default value.

6.1. Validations

Next, we evaluate and validate our method in terms of its capability
of performing the four tasks introduced in Section 3.

Evaluation of rigidity test. First, we employ our method to test
the rigidity of a wide variety of assemblies. Figure 10 shows the
models employed in this evaluation. They cover different kinds of
mechanical objects and also different types of joints, e.g., hinges,
sliding, and ball joints. All assemblies (except the one in Fig-
ure 10(a)) do not have fixed nodes. Some of them are rather com-
plex, making it a challenging task to decide if the assembly is rigid
purely by visual observation.

We also apply our method to compute the worst-case load con-
figuration, as visualized by the orange arrows. The test results show
that our method can successfully identify all assemblies as rigid.
An important strength of our method is that it is a unified compu-
tational framework that can test the rigidity of a wide variety of
assemblies. These assemblies can have very different forms, and
they can be composed of different kinds of parts and joints, includ-
ing complex mechanical assemblies that have rarely been explored
before, e.g., spatial linkages and LEGO Technic assemblies.

Evaluation of potential part motions. For flexible assemblies,
our method can find potential part motions from just the input as-
sembly, without requiring other forms of input such as the pre-
scribed external loads or power sources. Figure 11 shows the po-
tential part motions identified by our method on a six-bar linkage
model and a LEGO Technic assembly. The detected part motions
are all correct and the run times for both models are less than 0.4
seconds. Based on the visualization of the detected motions, users
can add more parts to make the assembly rigid. Specifically, users
just need to mark a pair of connectable points among all parts
(while considering the aesthetics and fabricability), such that the
new part(s) can prevent the detected part motion; see Figure 11
(right) for the results.

Verification of our worst-case rigidity value. Next, we con-
ducted experiments to verify the worst-case rigidity measure, i.e.,
λ1 (see Section 4.2) computed by our method. Starting from the
flexible four-bar linkage assembly shown in Figure 12(a1), we in-
crementally add a part or change the endpoint position of an exist-
ing part to improve the rigidity of the assembly; see Figure 12(a2-
a4). For each linkage assembly, we apply our method to compute
the worst-case rigidity value and report it in the figure. The re-
sult shows that our method is able to analyze both flexible (Fig-
ure 12(a1)) and rigid assemblies (Figure 12(a2-a4)). Moreover, our
computed worst-case rigidity value is consistent with human intu-
ition. The assembly in Figure 12(a2) is rigid since a single short
bar is added onto the input four-bar linkage. After adding one more
short bar to Figure 12(a2), the assembly (Figure 12(a3)) becomes
structurally more rigid, corresponding to a larger worst-case rigid-
ity value. Furthermore, elongating the two new bars can make the
overall assembly (Figure 12(a4)) even more structurally rigid, due
to the two large three-bar triangles formed in the assembly.

Also, we apply our method to the two collinear bars shown in
Figure 12(b). Here, we actually know that increasing the overlap
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Figure 12: Our method quantifies the worst-case rigidity value
for each assembly in (a) and (b), and shows the corresponding
force (motion) in yellow (green) when the assembly is rigid (flex-
ible). From (a1) to (a3), two short bars are incrementally added
to a three-bar linkage and their lengths and positions are changed
in (a4). In (b), we show four different collinear bars with differ-
ent overlaps and with or without they have joint jitter effect. The
predicted motion and the relative magnitudes of rigidity values in
groups (a) and (b) are consistent with human intuition.

between the two bars will increase the rigidity of the assembly.
From Figure 12 (b1&b2), we can see that our method is able to
produce results that are consistent with our expectations. It is worth
noticing that the phenomenon of increasing the overlap is observed
when we apply our optimization method to larger-scale examples,
e.g., BUNNY in Figure 14. In practice, we also find joint jitters com-
mon in manufacturing methods such as 3D printing and laser cut-
ting, and usually have a negative impact on rigidity. Comparing
Figure 12 (b1) with (b3) and (b2) with (b4), we find that our analy-
sis results are aligned with the expected effects of joint jittering.

Evaluation of our geometry optimization. Lastly, we evaluate
our geometry optimization by conducting a physical experiment on
two assemblies and analyzing their rigidity before and after the op-
timization. The first one is a three-bar linkage where the length of
its bottom edge is fixed (see Figure 13(a)), whereas the second one
is a five-bar linkage where the lengths of three bars on the rectan-
gular boundary is fixed (see Figure 13(e)). For each assembly, we

Figure 13: Verification of our geometry optimization. Given input
assemblies (a&e), our optimization automatically adjusts the posi-
tion of endpoints of parts (b&f) to improve the structural rigidity.
We apply loads on the corresponding physical assemblies that are
before (c&g) and after (d&h) our optimization, showing that the
optimized assemblies have less deformation under the same amount
of external load.

perform our gradient-based optimization (see again Section 5.1) to
automatically adjust the position of the connecting points in the as-
sembly structure, i.e., vertices.

Figure 13 shows the optimized assemblies and the physical val-
idation results. First, we can see from Figure 13(b) that the initial
tall triangle becomes an isosceles triangle after our optimization;
on the other hand, comparing Figure 13(e&f), we can see that the
two supporting bars of the five-bar linkage become longer and join
together in the middle of the vertical bar. We fabricate the before-
and after-optimization versions of both assembly models using 3D
printing and apply the same amount of load on each of them. Com-
paring Figure 13 (c) with (d) and (g) with (h), we can see that the
optimized assembly models can better resist the (same) external
load with less deformation. Please also refer to Figure 8 for another
two results on geometry optimization.

6.2. Applications

To demonstrate the usefulness of our rigidity analysis and optimiza-
tion approach, we employ it to design and fabricate four different
kinds of structurally rigid assemblies; see Figure 14.

Linkage structure. Figure 14(a&b) show the BOOMERANG

and BUNNY models, which consist of both 3D-printed parts and
LEGO Technic pins. Since the forces exerted on them are often
hard to predict during the usage, it is important to optimize their
structures for their worst-case rigidity. We employ our gradient-
based optimization method to improve their rigidity, and it took
125 and 272 seconds for the two models, respectively.

For the BOOMERANG shown in Figure 14(a), our method ad-
justs the position of supporting bars, such that the boundary is less
deformed under the same 800g weights. We measure the vertical
position changes of the lowest point of the BOOMERANG, and ob-
serve a 13mm difference between two designs.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



Zhenyuan Liu et al. / Worst-Case Rigidity Analysis and Optimization for Assemblies with Mechanical Joints

Figure 14: Five different kinds of structurally rigid assemblies designed with our approach. We apply continuous optimization method as
presented in Section 5.1 to improve the rigidity for linkage models BOOMERANG (a), and BUNNY (b). We also apply discrete optimization
to introduce new part(s) to improve rigidity for reconfigurable DRYING RACK (c), rod-and-ball-joint structure RODS BOAT (d), and LEGO
TECHNIC BIRD (e). For each result, we show the assembly before (left) and after (right) the improvement on structural rigidity and also show
the worst-case loads (potential motions) with orange (green) arrows. We show physical experiments on fabricated prototypes to validate the
improvement in rigidity.

For the BUNNY in Figure 14(b), we first manually add internal
supporting structure to prevent the boundary from deforming, as
shown in Figure 14(b) left. Yet, the manually-added structure may
not be perfect, so we apply our method to adjust the position of the
internal nodes, making the BUNNY more rigid without introducing
new parts and joints. Similarly, we measure the vertical position
changes of the lowest point when weights are hung, and observe a
7mm difference between the initial and optimized designs.

Reconfigurable assembly. Our approach can help users to de-
sign reconfigurable assemblies that are structurally rigid for user-
desired assembly forms. Figure 14(c) shows a DRYING RACK de-
signed by our approach. Our system can predict and visualize the
worst-case deformation of the rack in its unfolded form and suggest
additional parts to improve structural rigidity. The physical exper-
iment shows the input model fails under the torsional deformation
as predicted by our rigidity analysis. With the new reinforced parts,
the assembly resists from the same external force.

Rod-and-ball-joint structure. As a natural extension, our sys-
tem can also support the design of assemblable rod-and-ball-joint
structures, which may benefit the prototyping process of the indus-
trial design. Figure 14(d) shows a RODS BOAT structure designed
by our approach. Our system successfully detects the two flexible
regions around the two ends of the initial assembly and visualizes

the corresponding motion with green arrows. By adding two new
rods (in red) to the structure, the assembly resists a pulling force at
the two ends, under which the initial one easily fails.

LEGO Technic assembly. We demonstrate our algorithm for
predicting and enhancing the structural rigidity of static 3D LEGO
Technic assemblies. Figure 14(e) shows a TECHNIC BIRD assem-
bly made of 84 LEGO Technic bricks, where our system detects
the vulnerability at the wings of the initial assembly. The worst-
case external load configuration shown as yellow arrows can guide
the user to add additional beams to reinforce the assembly, among
which we choose a long horizontal beam that connects the two
wings. We built the physical prototype with LEGO Technic parts
and applied the same external force to the input and the optimized
prototypes. The result shows that the reinforced assembly on the
right undergoes less deformation than the initial one.

Figure 1 shows another LEGO Technic example, a ROLLING

CHASSIS composed of beams in different orientations. Our method
predicts a twisting deformation under the worst-case external loads,
and guides users to add new beams to reinforce the assembly. We
perform physical experiments to validate the worst-case load: we
first lift the two opposite corners of the assembly, then hang up the
two weights (200g for each) on the other two corners. The resulting
reinforced assembly also exhibits less deformation.
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7. Conclusion

In this paper, we present a new approach with a unified framework
for computing, analyzing, and optimizing the structural rigidity of
assemblies with mechanical joints. Our contributions in this work
are threefold. First, we account for the fact that real materials are
generally not perfectly rigid, so we consider the impact of part de-
formation and joint jitters in rigidity analysis by modeling parts as
deformable objects of linear elasticity and joints as soft constraints.
Then, we represent both parts and joints as stiffness matrices, such
that the problem can be formulated as an optimization problem
that can be solved by an eigenanalysis, such that the eigenvalue
gives the worst-case rigidity and the eigenvector gives the worst-
case deformation. Lastly, we also develop methods to make use
of our rigidity measure to guide the optimization of the geometry
and topology of the assembly for greater rigidity. We validate the
worst-case rigidity measure through physical experiments on sev-
eral prototypes and demonstrate the effectiveness of our optimiza-
tion approach to aid the design and creation of structurally rigid
assemblies for a rich variety of forms.

Limitations and Future Work. This work has several limi-
tations that open up interesting new directions for future research.
First, our rigidity analysis and optimization approach can only han-
dle assemblies with mechanical joints. Extending it to support other
types of joints, such as woodworking joints, would be interesting
future work that may enable us to efficiently analyze the rigidity
of wooden structures related to furniture and architecture. Second,
we model the imperfection of mechanical joints by allowing de-
formation at the contact surfaces of the parts and measuring the
joint stiffness using a diagonal matrix. Simulating more accurately
the actual physics of the mechanical joints would lead to a more
precise worst-case rigidity analysis. Third, our optimization-based
design approach focuses on structural rigidity. Taking other design
goals, e.g., desired motion and/or functionality, into consideration
would be very helpful to enable the design and creation of more
practical assemblies. Lastly, our current continuous optimization on
assembly geometry can only handle simple linkage-based assem-
blies. Generalizing it to handle complex and general 3D assemblies
is another interesting and challenging future direction; in particular,
doing so can help us to better optimize continuous geometry, e.g.,
assemblies with 3D-printed parts.
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